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Asymptotic Error Estimates for 
Gaussian Quadrature Formulas 

By T. H. Charles Chen* 

Abstract. This paper gives derivative-free asymptotic error estimates for the Gaussian 
quadrature formula with the nonnegative weight function w(x) belonging to a certain class. 
Numerical examples are presented. 

1. Introduction. Let the nonnegative weight function w(x) be defined on the 
interval [-1, 1] such that the moments j l1 W(X)Xk dx exist for k = 0, 1, 2 .... It 
is well known [3, p. 74] that the following Gaussian quadrature rule has precision 
2n - 1, 

~~'1 ~~~n 
(1) frw(x)f(x) dx = I Wkf(xk) + En(f), 

k=l 

where Xk, k = 1, 2, ..., n, are the zeros of the orthonormal polynomial of degree n 
with respect to the weight function w(x) on the interval [-1, 1] and the weights wk 

are defined by 

I w(X) Pn(X) dx 
Wk JwI (X - Xk~) PnlX~ 

The following classical representation for the error term En(f) can be found, e.g., in 
[3, p. 227], 

En( f ) = fXt2n) [ (2n)! ] kn- 2 

where -1 < < 1 and kn is the leading coefficient of the orthonormal polynomial 
Pn(x) of degree n corresponding to the weight function w(x) on [-1, 1]. The above 
representation for En(f) is of little practical value, since the derivatives j(2n) are 
usually too difficult to obtain. In [2], Chawla and Jain have shown derivative-free 
asymptotic error estimates for the Gauss-Legendre rule, i.e., for the special case 
w(x) = 1. The Gauss-Legendre rule can be adversely affected by the nearby 
singularities of the integrand. In this case we may speed up the convergence by 
absorbing the critical factors into the weight function w(x); for example, consider 
w(x) = (x2 + a2)-fl in (1) for small a > 0. Kumar [8], [9] has derived Gaussian 
quadratures for certain nonclassical weight functions and also given error esti- 
mates. Recently several nonclassical xk and wk have been tabulated, e.g., Stroud 
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and Secrest [11], Piessens and Branders [10]. The main purpose of this paper is to 
extend Chawla and Jain's results [2] to some nonclassical weight functions w(x) 
belonging to a certain class. 

2. The Function D(t '; w). Define 

Qn(z) = w(x) n(X) dx, 

for z X [-1, 1]. The error term En(f) in (1) can be written as 

(2) En(f)=2I fQn(z) f(z) dz, 

see, e.g., Davis and Rabinowitz [3]. Here C is a simple closed contour in the 
complex plane and contains the interval [-1, 1] in its interior. The functionf(z) is 
assumed to be analytic inside C. Following Szego [12], the functions w(x) and 

Ilog w(x)l are supposed Riemann integrable on [-1, 1]. In the following theorem, 
we employ the mapping z = (t + ( ') which maps the circle 141 = p > 1 in the 

(-plane onto the ellipse Ep in the z-plane with foci at z = + 1 and semiaxes 

?(p ? p-'). For the inverse mapping defined by = z + (9-1)1/2, we choose 
the sign of square root that makes 141 > 1 for z 4 [-1, 1]. The following theorem 
can be found in Barrett [1]: 

THEOREM 1. Uniformly on any compact subset of C/[- 1, 1], 

(3) Qn(Z) - 2n2 - 
ID(( -X; w)(I + o(l)), as n -x , 

Pn(Z) 

where 141 > 1 and z = (t + 1 - ')/2. The function D(t -; w) is defined by 

(4) D( -1; w) =exp f log[ w(cos ) ]+ l _e dO} 

for 141 > 1. 

Freud [5] and von Sydow [13] have employed the function D( -'; w) to find 

upper bounds for Gaussian quadrature errors. The function D(( -I; w) has the 

following algebraic properties, 
(i) D(t - ; WIW2) = D(' - ; wI) * D(-'; w2), 

(ii) D(t -'; WI/W2) = D(t -'; w1)/D( -'; W2), 

(iii) D(( -; wP) = D( -'; wy for constantp, 

(iv) D(t -'; k) = k for constant k, and 

(v) D( -'; kw,) = kD( -'; wI) for constant k. 
The evaluation or estimation of the kernel function D((-'; w) depends on the 

nature of the weight function. Since 

1 + 1e = 1+ 2 E -ke ik 

1- ~~~k=I1 

we may write (4) in the form 

D( '; w) = exp{v log[ w(cos 0) ] dO) 

( exp {2,i - flog[ w(cos O) ] cos kO dO -k}. 
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If the closed forms for fO log[w(cos O)]cos kO dA, k = 0, 1, 2,..., are known, then 
we can evaluate D( -1; w) exactly. For example, in the Gauss-Jacobi quadrature 
rule which has the weight function w(x) = (1 + x)a(1 - x)'3, a > -1, /8 > -1, the 
function D(( - 1; w) can be written as 

(6) D( -'; w) = 2-a-fi(l + 1-,)2a(l - (-1)2/3 

or D(t -; w) = 1, if a = 8 = 0. For the latter case, we can estimate E(f) by 

En(f) -iJf(z)(z + (Z2 - 1)1/2) dz, 

where the branch of (Z2 - 1)1/2 is chosen as before such that Iz + (Z2 - 1)1/21 > I 
for z i [-1, 1]. This is the representation for the Gauss-Legendre quadrature 
error previously considered by Chawla and Jain [2]. Closed forms for 
Jf log[w(cos O)]cos kO dA, k = 1, 2, . . ., can be obtained in the following case: 

LEMMA 1. Assume the following conditions are satisfied: 
(i) w(x) =# 0 at x = 1 and -1, 
(ii) w'/ w is a meromorphic function having only (finitely or infinitely many) simple 

poles at a ([-1,1], 

(iii) Iw'(z) w(z)l I O (p - 1) for z E- Ep. 
Then 

flog[w(coso)]cosk9dO = -7Tk- 1 k Res w'(z) 1 
z=x [ (z) J 

for k= 1, 2, . . ., where = a + (aj2- 1)/2 and 1X> 1. 

Proof. Choose an ellipse so that Ep contains [-1, 1] in its interior and is 
contained in a simply connected region in which w'/w is analytic. By the Cauchy 
integral formula we have 

O'X) - 2~W'(z) d 
w(x) IE W(Z)(z - ) dz, 

for x E [-1, 1]. Employing the technique of integration by parts, we may write 
7T 

I ~~=w'(x) Uk ()1-x)/dX 
flog[ w(cos 0) ] cos kO dO = k- _(x) k- (X)(I - X2)1/2 d 

= (2Tki) | W(Z) [f'(I - X2)1/2 Uk,(x)(z - x) dxl dz. 

We denote by Tk(x), Uk(x) the classical Chebyshev polynomials of the first and 
second kind, respectively. Since 

U_ ,(x) = (1 - x2 [xT(x) (X) 

and 

Tn+l(x) = 2xTn(x)- Tn- x) 

we may write 

(I -x2)/2 Uk (x)(z-x) dx 

= f 1 [Tkl(X)- Tk+(x)(1- x2) d/2(Z - X)1dx. 
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In [4, p. 275], Elliott has shown that 

' T,(x)(l - x2)-112(z - x)' dx = r(Z2- l)'!2(Z + (Z2 1/2 

where z 4 [-1, 1] and Iz + (Z2 _ 1)1/21 > 1. Therefore 

f log[ w(cos O) ] cos kO dO = (2ki)-l [w'(z)/w(z) ] (z + (Z2 - l)i/2)-k dz 

Without loss of generality, we may arrange the simple poles of w'/w in an 
increasing order in magnitude, i.e., tail ? la2l ? .... For each simple pole of 
w'/w, a(, we increase the value of p through a discrete set, p, < P2 < ... < PN 
< * * *, so that each EPN contains a(,j = 1, 2, ... , a(N), in its interior and no pole 
of w'/w is on any of the ellipses {EP}J? I. For each j, let the ellipse Ep be 
described in the positive sense and joined by a cross-cut (not intersecting the 
interval [-1, 1]) to a small circle, FD, with center at aj and described in the negative 
sense. Under condition (iii) we have 

flog[w(coso)]coskodo 
= 

-7Tk -l 
X 

k Res 
w'(z) 1 z=a~ [W()J 

Applying the above lemma to (5), we obtain 

THEOREM 2. Under the assumptions in the above lemma, we have 

D(t1 w) = exp (A0)* lI(l- 1-)t'Y for 141 > 1 
j 

where 

(7) Ao = 7T- log[ wx]/(I-x2) /2dx 

and 

2 Res w(z))] 

The importance of the above theorem is that condition (ii) of Lemma I can be 
satisfied by various classes of weight functions w(x) and then yj can be easily 
computed. 

In the above theorem, if w'/w has infinitely many simple poles, say a,al < la2l 
< . . < IaN,tI < . . . , we may use condition (iii) of Lemma 1 to estimate 
D(t -'; w) as follows 

N 

D( -'; w) = exp(AO) 111(I -0 -I-j). exp(RN) for |t| > 1, 

where 

IRN t < 4(lps _ 1) ct(N + a2,.., a a n o (a1 in its ieo 

and the ellipse EP contains (xl, (x2, .... Po Nx, and no other (X>, in its interior. 
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If the weight function can be written as w(x) = (1 + x)m(1 - x)"w,(x) for some 
constants m > 0, n > 0, and w1( ? 1) -# 0, then, appealing to the algebraic proper- 
ties of the function D(t - 1; w) and (6), we have 

D( 1; w) = 2-m-n(l + -1)2m(l 
i ;')2nD( -'; w,). 

Then we can apply Theorem 2 to the weight function w,(x), in place of w(x). 
The definite integral in (7) does not always have a closed form. However, it can 

be estimated by the Gauss-Chebyshev quadrature rule, i.e., by absorbing the factor 
(1 x2)- 1/2 into the weight function; see, for example, [7, p. 115]. 

In the following special cases, closed forms for the integral in (7) can be found in 
[6]. 

COROLLARY 1. If w(x) = (X2 + a2) 'for a > 0, then 

(8) D( ';w) = 4[a + (a2 + 1)1/2]-2{l +[(a2 + 1)1/2 - a]2/2}-2. 

COROLLARY 2. If w(x) = (x + a) 1 for real l a l > 1, then 

(9) D( -';w) = 2(a + (a2- 1)1/2)1(1 + (a - (a2 - 

Applying the algebraic properties of the function D(t - 1; w), we can use the 
above evaluation for the function D( - ; w) to obtain error estimates for the 
nonclassical Gaussian quadrature formulas tabulated by Piessens and Branders in 
[10, Tables vi and vii] for the weight functions w(x) = (x2 + a2)a and w(x) = 

(x + b)a for several different values of a, b, and a. 

3. Asymptotic Estimates for E(f). Substituting (3) into (2), we obtain 

(10) En) (Z 
- 

ifz-2n - 'D lw) dz. 

The estimation of the above contour integral depends on the nature of the function 
f(z). We will mimic the techniques previously employed by Elliott [4] and Chawla 
and Jain [2] by considering the following four cases. 

Case 1. f is an entire function. For an entire function f, the contour C in (10) can 
be displaced freely in the complex plane, provided it never crosses the interval 
[-1, 1]. We can therefore use the method of steepest descents to estimate En(f) 
when the contour is deformed to pass through the saddle points of the integrand. 
We write (10) as 

En(f) ---if exp(h(z))D( ';w) dz, 

where h(z) = log(f(z)) - (2n + l)log(z + (Z2 _ 1)1/2). If h'(z) has a simple zero at 
zo [-1, 1] and letting 40 = zo + (z 2 _ 1), then we may use the saddle-point 
method to estimate the above integral. As before, we choose the branch of 
(z2-_ 1)1/2 such that 1Io1 > 1. For large n, assuming that the main contribution to 
the contour integral comes from the portion of the integral passing through the 
saddle point zo (where h'(zo) = 0), we obtain the following estimate for En(f): 
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where lal = 1 and arg(a) = 2 - 2 arg(h"(zo)). If the weight function w(x) 
satisfies the conditions in Lemma 1, then using Theorem 2 we can estimate En(f) as 
follows: 

En(f) i(2T)' 2aIh"(zo)I -1/2 exp(h(zo))exp(Ao) 

( )II ( - ?,- t 

where A0 is defined in (7), aj are simple poles of w'/w, yj = 2 Res,,_,,(w' w), 
i, ~ + (a2 - l)'a 2 and > 1. 
Example 1. Let a = .01 and consider the following Gaussian quadrature rule: 

n 

j exp(x)/ (x2 + a2) dx = I wk exp(xk) + En(f) 
-1 k -I 

The weights wk and abscissas xk corresponding to the weight function w(x)= 
(x2 + .0001)- are available in [10]. Combining (8) and (11), we obtain 

En(f) 4(a + (a2 + 1)1/2)-2(2,g)1/2 exp(z0)C2 -2n1(z -1/2 

{I +[(I + a2)'/2 -a]2t-2-2 

where zo = ((2n + 1)2 + 1)1/2, (o = Zo + (Z2 - 1)1/2, and h"(zo) = zo(2n + 1)-2. 

In this example, there are two saddle points ?((2n + 1)2 + 1)1/2. However, the 
contribution from the negative saddle point is relatively small and can be neglected 
for our purposes. 

TABLE 1 

Values for I En(f) I in Example 1 

n actual estimated 

3 .2474(-3) .2762(-3) 
4 .1132(-5) .1227(-5) 
5 .3186(-8) .3396(-8) 
6 .6091(-11) .6413(-11) 

In Table 1, values in parentheses indicate the power of 10 by which the tabulated 
values are to be multiplied. 

In order to weaken the effect of nearby singularities, Kumar [8], [9] has 
investigated the Gaussian rule (1) with the weight function w(x) replaced by 

w(x)/ [ (2a + I)x2 + a2 ], 

for a > 0; where w(x) = (1 - x2)- 1/2, (1 - X2)1'/2, and [(1 - x)/(1 + X)]1/2. 

Case 2. f(z) has simple poles. Suppose that f(z) has simple poles at aj, j = 

1, 2, ... By deforming the closed contour Ep as in Lemma 1, we have 

(12) En(f) z -27r D((j l; j 
ReZ = (a 

where j = + (a)j-1)1/2 and Jtjj > 1. For the evaluation or estimation of the 
function D(t - 1; w), we refer to Theorem 2. 
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Example 2. Consider the Gaussian quadrature error 

I ~~~~~~~~n 
En(f) = f(x)/ (x + a) dx - Wkf(Xk), 

_I k=1 

where a = .01 and f(x) = (x2 + 1)- 1. The integrand f(x) has two simple poles at 
? i. Combining (8) and (12), we obtain 

En(f) (-1)n+ '8(a+(a2 + 1)1/2) 2{1-[(1 +a2)1/2 ]2/ (3+2\)} 

(1 +V 2 )-2n-1 

TABLE 2 
Values for I En (f ) I in Example 2 

n actual estimated 

3 .6887(-1) .7448(-1) 
4 .1219(-1) .1278(-1) 
5 .2109(-2) .2193(-2) 
6 .3644(-3) .3762(-3) 

Case 3.f(z) has an algebraic singularity on the real axis. Sayf(z) = (c -z)g(z), 
where c > 1, g(z) is entire and 4 is rational and nonintegral. To estimate the 
contour integral (10), we choose the contour as in the proof of Lemma 1, except 
that the cross-cut now encloses the part of the real axis between the small circle 
centered at z = c, and the ellipse Ep. Again we assume that the integral (10) along 

Ep tends to zero as p-* x. We also assume that 4 > -1, so that the integral 
around the small circle tends to zero. In the limit, therefore, the only contributions 
to the contour integral (10) come from the line segment of the cross-cut, which 
combine to give 

En(f) -2 sin(7TO) lim Ic - xlg(x)D(-l';w)/ (x + (X2 - l)1/2)2nl1dx. 

The above integral can be estimated as in [2] and [4]. Assuming that the major 
contribution to the integral comes from values close to z = c, we obtain the 
estimate 

En(f) -2 sin(7r4)(c2_ 1)(- + )/2g(c)D w) 
(13) * (2n + 1)'+'F(+ + l)g-2n-I 

where 6 = c + (C2 _ 1)1/2 and 16J > 1. 
Example 3. Consider the Gaussian quadrature error 

n 
fw(x)(2 - x) / 2dx = E wk(2 - xk) / + En(f) 

k= 1 
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where w(x) = (x + a)-', a = 1.01, and f(x) = (2 - x)'12. The abscissas xk and 
weights wk are available in [10]. The following explicit form for this integral can be 
obtained by the substitution 2 - x = 2 

f'(2 -x)'2/ (x + a) dx 

= 2(1 - 31/2) - b log[(31/2 - b)(31/2 + b)-'(l + b)(l -b)-], 

where b = (2 + a)'/2. Equations (9) and (13) give 

En(f) -2(27)'/'7/2(a + (a2-l)1/2) 1 +[aa - (a 1 ]/&} 

(2n + l)3/22n, 

where t = 2 + 31/2 

TABLE 3 
Values for I En (f ) I in Example 3 

n actual estimated 

3 .3517(-4) .2472(-4) 
4 .1590(-5) .1218(-5) 
5 .8020(-7) .6470(-7) 
6 .4327(-8) .3616(-8) 

Case 4. f(z) has a logarithmic singularity on the real axis. Consider f(z) = 

g(z)log(c - z), where c > 1, and assume g(z) entire. Since the integral (10) around 
the small circle centered at c tends to zero as the radius of the circle tends to zero, 
the contributions from the cross-cut in this case combine to give 

En(f) -2T lim A D(( -'; w)(x + (x2 - 1)1/2)2n 'g(x) dx. 

Applying the same techniques as in Case 3, we obtain the following estimate 

(14) En(f) -27g(c)(c2- l)'/2D((j-';w)(2n + 1)'1j2n-1, 

where L = c + (C2 - 1)1/2 and Jij > 1. 
Example 4. Consider the Gaussian quadrature error 

I ~~~~~~~~n 
En(f) = J w(x)log(2 - x) dx - wk log(2 - xk) 

-1 k=l 

for w(x) = (x + a) , a = 1.01. Equations (9) and (14) give the estimate: 

En(f) z -47T(3) /2[a + (a2- l)I/211[1 + (a - (a2-l)1/2)/6] 

* (2n + l) -c-2n-I 

where t = 2 + 31/2. 
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TABLE 4 

Values for I En(f) I in Example 4 

n actual estimated 

3 .2069(-3) .1762(-3) 
4 .llll(-4) .9839(-5) 
5 .6373(-6) .5780(-6) 
6 .3794(-7) .3511(-7) 

Example 5. Choose w(x) = exp(-x2) and f(x) = exp(x2) for the following 
Gaussian quadrature: 

n 

En(f) = w(x)f(x) dx- _ wkf(xk) 
-1 k= 1 

Again the abscissas xk and weights wk are available in [10]. In this case, w'/w = 

-2z is an entire function, therefore, Theorem 2 cannot be applied to estimate the 
function D(t -'; w). Nevertheless, D(t '; w) can be evaluated exactly by (5). We 
find that 

D(' - ; w) = exp(- -l I 
-2) 

Applying the technique described in Case 1 for the entire function f(x) = exp(x2), 
we obtain 

En(f )(2) /2 (h"(Zo)) 1/24;- 2n - exp(Z2 - -2) 

where 

zo = (2 + 2(4n2 + 4n + 2)1/2)1/2/2, 

h"(zo) = 2 + 8(2n + l)zo[-2 + 2(4n2 + 4n + 2)1/213/2, 

and 

40 = zo + (z2 - 1)1/2 

In this example the other saddle point -(2 + 2(4n2 + 4n + 2)'/2)1/2/2 also has a 

significant contribution to the contour integral and cannot be ignored. Therefore 
the estimated error consists of two terms: 

En(f) y (2Xg) /(h (Z )) 0 /2 12nl exp(z - 
2 -2 

where zo = ?(2 + 2(4n2 + 4n + 2)1/2)1/2/2. 

TABLE 5 

Values for IEn(f)I in Example 5 

n actual estimated 

3 .6839(-2) .6105(-2) 
4 .4471(-3) .4734(-3) 
5 .2295(-4) .2779(-4) 
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